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ABSTRACT 
This article deals with the modeling and formulation of compositional gas liquid Darcy flow. Our model includes an advanced boundary 
condition at the interface between the porous medium and the atmosphere accounting for convective mass and energy transfer, liquid 
evaporation and liquid outflow. The formulation is based on a fixed set of unknowns whatever the set of present phases. The 
thermodynamic equilibrium is expressed as complementary constraints. The model and its formulation are applied to the simulation of 
the Bouillante high-energy geothermal field in Guadeloupe characterized by a high temperature closed to the surface. 

1. INTRODUCTION 
Taking into account water table fluctuations and the interaction of shallow water levels with geothermal systems while modeling their 
natural state is notoriously difficult. We investigate a new formulation for the non-isothermal compositional gas liquid Darcy flows and 
its coupling with an advanced soil-atmosphere boundary condition. 

The latest is needed to model the soil-atmosphere interaction because the coupling between the porous medium and surface flows would 
not be computationally realistic for geothermal time and space scales. This soil-atmosphere boundary condition is based on mole and 
energy balance equations expressed at the interface, taking into account the vaporization of the liquid phase in the atmosphere, the 
convective molar and energy transfer, a liquid outflow condition as well as the precipitation and radiation terms. The compositional 
model typically accounts for the water component that can vaporize into the gas phase and a set of gaseous components which can 
dissolve in the liquid phase (air…). 

Then, we choose a formulation that is based on the pressures, saturations, temperature and phase molar fractions as set of unknowns. No 
switch of variables is required as this choice of unknowns is combined with an extension of the phase molar fractions of an absent phase 
by the molar fractions at thermodynamic equilibrium with the present phase. This implies that the set of unknowns does not depend on 
the set of present phases. More precisely, the phase transitions are expressed as complementary constraints which results that the non-
linear system can be solved using semi-smoothed Newton algorithms. 

The model and its formulation are applied on the Bouillante high temperature geothermal field located in Guadeloupe which show 
temperature of 250°C around 300m deep and soil with near boiling conditions in some places. 

2. NON-ISOTHERMAL COMPOSITIONAL TWO-PHASE DARCY FLOW MODEL 
We consider a non-isothermal compositional liquid gas Darcy flow model with 𝑔, 𝑙  denoting the set of gas and liquid phases. Each 
phase 𝛼 ∈ 𝑔, 𝑙  is a mixture of a set of components denoted by C including typically a water component, denoted 𝑤, which can 
vaporize in the gas phase and a set of gaseous components that can dissolve in the liquid phase. The thermodynamic properties of each 
phase 𝛼 ∈ 𝑔, 𝑙  depend on its pressure Ρ!, the local equilibrium temperature of the system 𝑇 and its molar fractions 𝐶! = (𝐶!!)!∈! . 

For each phase 𝛼 ∈ 𝑔, 𝑙 , we denote by ζ!(Ρ! ,𝑇,𝐶!) its molar density, by ρ!(Ρ! ,𝑇,𝐶!) its mass density, by µ!(Ρ! ,𝑇,𝐶!) its 
dynamic viscosity, by e!(Ρ! ,𝑇,𝐶!) its molar internal energy and by h!(Ρ! ,𝑇,𝐶!) its molar enthalpy. For the gas phase, as we 
consider an ideal gas mixture, the molar enthalpy is defined by  

hg(Pg,T,Cg ) = Ci
g

i∈C
∑ hi

g(Pg,T ),      (1) 

where h!
!(Ρ!,𝑇) is the molar enthalpy of the component 𝑖 in the gas phase. 

Thermodynamic equilibrium between the gas and liquid phases will be assumed for each component and governed by the phase 
fugacities denoted by f! Ρ! ,𝑇,𝐶! = (𝑓!! Ρ! ,𝑇,𝐶! )!∈! , 𝛼 ∈ 𝑔, 𝑙 .   The rock porosity is denoted by 𝜙(𝒙) and the rock permeability 
tensor by 𝚲(𝒙) where 𝒙 denotes the spatial coordinates. The hydrodynamic Darcy laws are characterized by the relative permeability 
𝑘!!(𝒙, 𝑆!) of each phase 𝛼 ∈ 𝑔, 𝑙 , as a function of the phase saturation 𝑆!, and by the capillary pressure 𝑃! 𝒙, 𝑆! =  𝑃! − 𝑃!. The 
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dependence of the relative permeabilities and capillary pressure on 𝒙, which is piecewise constant for each rocktype, is omitted in the 
following for the sake of simplicity.  

Our formulation of the model is based on the fixed set of unknowns defined by  

X = (Pα,T,Sα,Cα,α ∈ {g, l}).      (2) 

Note that, as opposed to the Coats' variable switch formulation (see Class, Helmig and Bastian (2002)), the molar fractions 𝐶! of an 
absent phase 𝛼 are extended by the ones at equilibrium with the present phase in the sense that the equality of the gas and liquid 
fugacities always holds f! Ρ!,𝑇,𝐶! = f ! Ρ! ,𝑇,𝐶! . Let 𝑛!(𝑋) be the number of moles of the component i ∈ C per unit pore volume 
defined by 

ni (X) = ζαSαCi
α

α∈{g, l}
∑ , i ∈C.      (3) 

We introduce the rock energy per unit rock volume defined by 𝐸!(𝑇) and the fluid energy per unit pore volume defined by 𝐸 𝑋 =
𝜁!!∈ !,! S!𝑒!.  Let us denote by 𝐠 the gravitational acceleration vector. The generalized Darcy velocity of the phase 𝛼 ∈ 𝑔, 𝑙  is 

given by  

Vα = −
kr
α

µα
Λ(x) ∇Pα − ραg( )      (4) 

The total molar flux of the component i ∈ C is denoted by 𝒒𝒊 and the energy flux by 𝒒𝒆, with 

qi = Ci
αζ αVα

α∈{g, l}
∑ , qe = hαζ αVα

α∈{g, l}
∑ −λ∇T,     (5) 

where λ stands for the bulk thermal conductivity of the fluid and rock mixture. The system of equations accounts for the molar 
conservation of each component i ∈ C together with the energy conservation 

φ(x)∂tni + div(qi ) = 0, i ∈C,
φ(x)∂tE + (1−φ(x))∂tEr + div(qe ) = 0.

     (6) 

It is complemented by the following capillary relation between the two phase pressures and the pore volume balance 

Pc (S
g ) = Pg −Pl,

Sα =1.
α∈{g, l}
∑

⎧

⎨
⎪

⎩⎪
      (7) 

Due to change of phase reactions assumed to be at equilibrium, phases can appear or disappear. Thanks to the extension of the phase 
molar fractions, the thermodynamic equilibrium can be expressed as the following complementary constraints for each phase α ∈ 𝑔, 𝑙  
combined with the equality of the gas and liquid fugacities of each component in the spirit of Lauser, Hager, Helmig and Wohlmuth 
(2011) and Masson, Trenty and Zhang (2014): 

Sα ≥ 0, 1− Ci
α ≥ 0, Sα (1− Ci

α ) = 0
i∈C∑ , α ∈ {g, l},

i∈C∑
fi
g(Pg,T,Cg ) = fi

l (Pl,T,Cl ), i ∈C.

⎧
⎨
⎪

⎩⎪
   (8) 

Note that our formulation of the model leads, independently on the set of present phases, to the fix sets of 2 ⋕ 𝐶 + 5 unknowns and of 
2 ⋕ 𝐶 + 5 equations including the ⋕ 𝐶 + 1 conservation equations and the remaining ⋕ 𝐶 + 4 local closure laws. 

2. SOIL-ATMOSPHERE BOUNDARY CONDITION FOR NON-ISOTHERMAL COMPOSITIONAL LIQUID GAS DARCY 
FLOW 
The fluid and energy transport in high-energy geothermal systems is deeply governed by the conditions set at the boundary of the 
computational domain. In particular, it is well known that the modeling of the interaction between the porous medium model and the 
atmosphere plays an important role (refer to O'Sullivan, Pruess and Lippmann (2001)). In this section we propose a boundary condition 
model taking into account the convective molar and energy transfer and the vaporization of the liquid phase in the atmosphere as well as 
a liquid outflow condition. 
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2.1 Convective molar and energy transfer in the atmosphere 
The convective molar transfer coefficient 𝐻! and the convective energy transfer coefficient 𝐻! account for the turbulent boundary 
layers of the gas flow and transport in the atmosphere. They are usually obtained from correlations used for environmental gas flows 
depending on the roughness of the soil surface including the effect of the vegetation, on the wind velocity, on the eddy diffusivity in the 
air stream and stability of the air above the heated soil surface. Let us also introduce the additional unknown q!,!"# accounting for the 
gas molar flow rate at the interface on the atmosphere side oriented outward from the porous medium domain. The liquid phase is 
assumed to vaporize instantaneously when leaving the porous medium as long as the atmosphere is not saturated with water vapor. As 
soon as the atmosphere is vapor saturated at the interface, a liquid molar flow rate q!,!"# is allowed to exit the porous medium. The 
prescribed far field atmospheric conditions are defined by the phase molar fractions 𝐶!

∝,!"#,𝛼 ∈ 𝑔, 𝑙 , the temperature 𝑇!!"# and the 
pressure 𝑃!"#, which fixes the far field atmospheric enthalpy of the water ℎ!,!

!,!"# = ℎ!
! (𝑃!"#,𝑇!!"#). The model assumes the 

continuity of the gas phase characterized by the continuity of the gas pressure 𝑃! = 𝑃!"#, of the temperature 𝑇 and of the gas molar 
fractions 𝐶! at the interface. For any real 𝑢, let us set (𝑢)! = max(0,𝑢) and (𝑢)! = max(0,−𝑢).  

Thermodynamic equilibrium is always assumed at the interface in the sense that the gas molar fractions and pressure at the interface on 
the porous-medium side are extended by the one at equilibrium with the liquid phase in the absence of the gas phase. On the other hand, 
the liquid phase can appear or disappear according to the liquid phase complementary constraints.  It results that the following equations 
hold at the interface:  

fi
g(Pg,T,Cg ) = fi

l (Pl,T,Cl ), i ∈C,

Ci
g

i∈C∑ =1,

Sl ≥ 0, 1− Ci
l ≥ 0, Sl (1− Ci

l ) = 0
i∈C∑ ,

i∈C∑
Sg = Pc

−1(Pg −Pl ),
Sg + Sl =1,

    (9) 

where 𝑃!!!(𝑃! − 𝑃!) denotes the inverse of the monotone graph extension of the capillary pressure function Ρ!(𝑆!). 

At the interface, on the atmosphere side, the component gas molar normal flux and the gas energy normal flux are defined using the 
following two point fluxes between the interface on the atmosphere side and the far field atmospheric conditions at a given reference 
height: 

qi
g,atm = (qg,atm )+Ci

g − (qg,atm )−Ci,∞
g,atm +Hm (Ci

g −Ci,∞
g,atm ), i ∈C,

qe
g,atm = (qg,atm )+hw

g (Pg,T )− (qg,atm )−hw,∞
g,atm +HT (T −T∞

atm ).
   (10) 

Regarding the interface energy balance, the model can also account for the solar and long wave radiation that is absorbed by and emitted 
from the soil surface defined by the following net radiation 𝑅! (𝑊.𝑚!!): 𝑅! = 1 − 𝑎 𝑅! + 𝑅! − 𝜖𝜎!"𝑇!, where 𝑅! (𝑊.𝑚!!) is the 
incoming long-wave radiation emitted by the atmosphere, 𝑅! (𝑊.𝑚!!) is the net short-wave radiation, 𝑎 is the surface albedo,  𝜎!" 
(𝑊.𝑚!!.𝐾!!) is the Stephan-Boltzman constant and 𝜖 the soil emissivity. 

2.2 Liquid outflow complementary constraints 
The liquid phase is assumed to vaporize instantaneously when leaving the porous medium as long as the atmosphere is not saturated 
with water vapor. As soon as the atmosphere is vapor saturated at the interface, the component molar and energy normal fluxes in the 
liquid phase defined by  

qi
l,atm =Ci

l,atmql,atm, i ∈C,
qe
l,atm = hl (Pl,T,Cl,atm )ql,atm,

      (11) 

are allowed to exit the porous medium, where 𝑞!,!"# ≥ 0 is an additional unknown corresponding to the total liquid molar flow rate 
oriented positively outward to the porous-medium domain. We introduced the liquid molar fractions 𝐶!,!"# = (𝐶!

!,!"#)!∈!  at the 
interface on the atmosphere side by the one at thermodynamic equilibrium with the gas phase, such that 𝑓!(𝑃!"#,𝑇,𝐶!,!"#)  =
 𝑓!(𝑃!,𝑇,𝐶!). Note that, due to the jump of the capillary pressure which vanishes on the atmosphere side, 𝐶!,!"# does not match in 
general with the liquid molar fractions on the porous-medium side 𝐶! which satisfies 𝑓!(𝑃! ,𝑇,𝐶!)  =  𝑓!(𝑃!,𝑇,𝐶!). 

The liquid molar outflow rate 𝑞!,!"# is determined by the following complementary constraints accounting for the thermodynamic 
equilibrium between the liquid and gas phases at the interface on the atmosphere side: 
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1− Ci
l,atm

i∈C∑ ≥ 0, ql,atm ≥ 0,

(1− Ci
l,atm

i∈C∑ )ql,atm = 0.

⎧
⎨
⎪

⎩⎪
     (12) 

It remains to eliminate the liquid molar fractions 𝐶!,!"# from (11) and (12).  Let us consider for 𝑓 ∈ ℝ!  the function 𝒞 !(𝑓,𝑃! ,𝑇) ∈ ℝ!  
defined as the unique solution of the equation  𝑓! 𝑃! ,𝑇,𝐶! = 𝑓. From 𝑓! 𝑃!,𝑇,𝐶! = 𝑓! 𝑃!,𝑇,𝐶!,!"# = 𝑓! 𝑃! ,𝑇,𝐶! ≔ 𝑓, it 
results that 𝐶!,!"# = 𝒞 !(𝑓,𝑃!,𝑇). On the one hand, if 𝑆! > 0, it follows that 
1 − 𝐶!

!,!"#
!∈! = 𝐶!! − 𝐶!

!,!"#
!∈! = (𝒞!! 𝑓,𝑃! ,𝑇 − 𝒞!! 𝑓,𝑃!,𝑇 )!∈! . Following Masson, Trenty and Zhang (2014), since the 

function 𝒞!! 𝑓,𝑃,𝑇!∈!  is strictly decreasing with respect to 𝑃, it results that the complementary constraints (12) is equivalent to  

Pg −Pl ≥ 0, ql,atm ≥ 0,
(Pg −Pl )ql,atm = 0.

⎧
⎨
⎪

⎩⎪
      (13) 

On the other hand, if 𝑆! = 0 then one has 𝑃! − 𝑃! = 𝑃! 1 > 0 and 𝐶!
!,!"#

!∈! < 1. It results that both conditions (12) and  (13) imply 
that 𝑞!,!"# = 0.  Finally, let us remark that if (13) holds, the liquid outflow fluxes in (11) rewrite as follows:  

qi
l,atm =Ci

lql,atm, i ∈C,
qe
l,atm = hl (Pl,T,Cl )ql,atm.

      (14) 

The model also takes into account the following component molar and energy flow rates which represent the precipitation recharge  

qi
l,rain =Ci

l,rainql,rain, i ∈C,
qe
l,rain = hl (Patm,T∞

atm,Cl,rain )ql,rain,
     (15) 

with the rain molar fractions denoted by 𝐶!,!"#$ = (𝐶!
!,!"#$)!∈! , a temperature assumed at equilibrium with the far field atmosphere and 

the rain molar enthalpy denoted by ℎ!,!"#$ = ℎ!(𝑃!"#,𝑇!!"#,𝐶!,!"#$). 

2.3 Evaporation-outflow boundary condition 
Both the liquid outflow and evaporation models are combined in a single boundary condition, assuming that the liquid does not 
accumulate at the surface. Gathering the equations (10), (9), (13), (14), (15) together with the component molar and energy balance 
equations, the evaporation-outflow boundary condition at the interface is defined by the sets of 2 ⋕ 𝐶 + 7 unknowns  

XΓ = (qg,atm,ql,atm,Pα,T,Sα,Cα,α ∈ {g, l}),     (16) 

and equations 

qi ⋅n = (q
g,atm )+Ci

g − (qg,atm )−Ci,∞
g,atm +Hm (Ci

g −Ci,∞
g,atm )+Ci

lql,atm +Ci
l,rainql,rain, i ∈C,

qe ⋅n = (q
g,atm )+hw

g (Pg,T )− (qg,atm )−hw,∞
g,atm +HT (T −T∞

atm )− Rn + h
l (Pl,T,Cl )ql,atm + hl,rainql,rain,

Pg = Pg,atm,
Sg = Pc

−1(Pg −Pl ),
Sg + Sl =1,

Ci
g

i∈C∑ =1,

Sl ≥ 0, 1− Ci
l ≥ 0, Sl (1− Ci

l ) = 0
i∈C∑ ,

i∈C∑
fi
g(Pg,T,Cg ) = fi

l (Pl,T,Cl ), i ∈C,
Pg −Pl ≥ 0, ql,atm ≥ 0, (Pg −Pl )ql,atm = 0.

  (17) 
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3. STUDY OF THE SOIL-ATMOSPHERE BOUNDARY CONDITION ON 2D GEOTHERMAL TEST CASES 
In these test cases, the porous medium is homogeneous of porosity 𝜙 𝒙 = 0.35 and of isotropic permeability 𝚲 𝒙 =  𝑘×𝐼 with 
𝑘 = 1 𝐷. The relative permeabilities are defined by 𝑘!! 𝑆! = (𝑆!)! for each phase 𝛼 ∈ 𝑔, 𝑙 . The capillary pressure function is given 
by the Corey law (see Figure 1)  

Pc (S
g ) =

−b ln(1− Sg ), if O ≤ Sg ≤ S1,

−b ln(1− S1)+
b

1− S1
(Sg − S1), if S1 < S

g ≤1,

⎧

⎨
⎪

⎩
⎪

   (18) 

with 𝑏 = 2  10! 𝑃𝑎 and 𝑆! = 0.99. The capillary pressure is regularized for 𝑆! ∈ (𝑆!; 1  to allow for the disappearance of the liquid 
phase (see Figure 1). Since there is no entry capillary pressure (in the sense that 𝑃!(0) = 0), the complementary constraints 
min (P! S! , q!,!"#) = 0 are equivalent to min (𝑆!, q!,!"#) = 0.  

 

Figure 1: Relative permeabilities (left) of both phases 𝒌𝒓𝜶,𝜶 = 𝒈, 𝒍 and capillary pressure 𝑷𝒄 (right) as functions of the liquid 
saturation 𝑺𝒍. 

The gas thermodynamic laws are defined by the perfect gas molar density 𝜁! = 𝑃! 𝑅𝑇, with 𝑅 = 8.314 𝐽.𝐾!!.𝑚𝑜𝑙!! and the 
viscosity 𝜇! = (0.361 𝑇 − 10.2  10!! 𝑃𝑎. 𝑠. The liquid molar enthalpy ℎ! and the gas molar enthalpies of each component ℎ!

!, ℎ!
!  are 

taken from Schmidt (1969). The gas molar enthalpy is then defined by (1). The liquid molar density and viscosity are also from Schmidt 
(1969) and defined by 𝜁! = 780.83795 + 1.62692 T − 3.06354   10!! T! 1 + 0.651 C! ×

!
!.!"#

𝑚𝑜𝑙.𝑚!!, 

𝜇! = 1 + 1.34 C! + 6.12 C!!  10!!

0.02148(T − 273 − 8.435 + 8078.4 + T − 273 − 8.435 ! ) − 1.2
𝑃𝑎. 𝑠 with the salinity fixed 

to C! = 35  10!! 𝐾𝑔.𝐾𝑔!!. The mass density is defined by 𝜌! = 𝐶!!𝑚!𝜁!!∈! ,∝∈ 𝑔, 𝑙  with the molar masses 𝑚! = 0.029 and 
𝑚! = 0.018 𝐾𝑔.𝑚𝑜𝑙!!.  The vapour pressure 𝑃!"#(𝑇) is given by the Clausius-Clapeyron equation 

Psat (T ) =100exp 46.784−
6435
T

−3.868log(T )
⎛

⎝
⎜

⎞

⎠
⎟,     (19) 

and the Henry constant of the air component is set to 𝐻! = 10!𝑃𝑎. The molar internal energy of each phase is considered to be equal to 
its enthalpy. The fugacities are defined by 

fi
g =Ci

gPg, i = a,w,

fw
l =Cw

l Psat (T )exp −
Psat (T )−P

l

1000RT 0.018
⎛

⎝
⎜

⎞

⎠
⎟,

fa
l =Ca

lHa.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

     (20) 

Finally, the thermal conductivity is fixed to λ = 3 W.m!!.𝐾!! and the rock energy per unit volume is given by 𝐸!  𝑇 = 2  10! 𝑇 in 
J.m!! with 𝑇 in 𝐾.  

The two dimensional test case illustrated in Figure 2 represents a simplified 2D cut of the Bouillante geothermal reservoir. It is run with 
two different upper boundary conditions to compare the solutions obtained with the evaporation-outflow boundary condition introduced 
in section 2 and with Dirichlet boundary conditions.  The initial and left side conditions are defined by a pure water liquid phase (𝑆! =
1, 𝐶!! = 1) at hydrostatic pressure and by a linear temperature between the fixed top and bottom temperatures. The bottom boundary is 
impervious (no Darcy flux) with a fixed temperature of 400 𝐾 except in the interval 8000 𝑚 ≤ 𝑥 ≤ 1000 𝑚 where a pure water liquid 
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input flux of −2.9  10!!𝑚𝑜𝑙.𝑚!!. 𝑠!! at 550 𝐾 is imposed. The right side of the domain is supposed thermally isolated (no Fourier 
flux) and impervious (no Darcy flux).  

The top boundary conditions are test case dependent and are detailed below, except at the seabed boundary such that 𝑧 ≤ 0 𝑚, 
𝑥 ≤ 5000 𝑚. The seabed boundary condition is defined by a pure water liquid phase (𝑆! = 1, 𝐶!! = 1) at hydrostatic pressure. The 
temperature is sea depth dependent. It is linear between the sea level 𝑧 = 0 𝑚 at 300 𝐾 and 𝑧 = −100 𝑚 at 278 𝐾, then constant below 
𝑧 = −100 𝑚.    

 

Figure 2: Illustration of the two dimensional domain and its boundary conditions. 

A Voronoi mesh satisfying the admissibility condition of TPFA schemes at both inner and boundary faces has been generated. It 
contains approximately 3500 cells (around 4000 degrees of freedom) and is refined at the neighborhood of the top boundary with a 
volume ratio of 115 between the smallest and the largest cells of the mesh. The simulations are run over the time interval 0, 𝑡! , 𝑡! =
1000 years, with an adaptive time stepping starting with an initial time step of 6 days in the Dirichlet case and of 1 day with the 
evaporation-outflow boundary condition. The maximum time step is fixed to 700 days in both cases. 

3.1 2D geothermal test case with Dirichlet top boundary conditions 
In this test case, the upper boundary is composed of three parts corresponding to the seabed (𝑧 ≤ 0 𝑚 and 0 ≤ 𝑥 ≤ 5000 𝑚) described 
above, a sunny plain zone (0 < 𝑧 ≤ 500 𝑚 and 5000 𝑚 < 𝑥 ≤ 8450 𝑚) and a rainy mountain zone (𝑧 > 500 𝑚 and 8450 < 𝑥 ≤
11000 𝑚). The sunny plain zone is defined with the same parameters than the far field atmosphere conditions used in subsection 3.2 , 
which means that the relative humidity is fixed to 0.5, the temperature to 300 𝐾 and the gas pressure to 𝑃! = 1 𝑎𝑡𝑚  from which we 
deduce that only the gas phase with water and air molar fractions 𝐶!

! = 0.99, 𝐶!
! = 10!! is present. The rainy mountain zone is 

characterized by a diphasic fluid at thermodynamic equilibrium which is fitted in such a way that the liquid flux entering the domain is 
similar to the one obtained in subsection 3.2 with the evaporation-outflow top boundary condition including the precipitation recharge. 
Then, using the simulation results of subsection 3.2 , the Dirichlet boundary condition for 𝑧 > 500 𝑚 (which corresponds to 𝑥 >
8450 𝑚) is defined by  

Sg = 0.72, Sl = 0.28,
Pg =1 atm, Pl = −153671Pa,
Ca

g = 0.97, Cw
g = 0.03,

Ca
l =10−3, Cw

l = 0.999,
T = 300 K.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

     (21) 

Figures 3 and 4 exhibit the temperature and the gas saturation in the reservoir at final time and Figure 5 shows the main physical 
variables at different times along the top cells. The top cells are chosen rather than the top boundary since the top boundary variables are 
fixed by the Dirichlet conditions. The degree of freedom of the top cell is the center of the cell which is located approximately 12 𝑚 
below the top boundary.  Let us notice the sharp gradients observed in the plots of Figure 5 at the shoreline 𝑥 = 5000 𝑚. From Figures 
3, 4 and 5, let us remark that the high temperature flux goes out of the reservoir at the top boundary on both sides of the shoreline 
approximately in the interval 3575 𝑚 ≤ 𝑥 ≤ 5550 𝑚. Inside this interval, we can observe a temperature drop in the interval 4800 𝑚 ≤
𝑥 ≤ 5200 𝑚. It is explained by the evaporation of the liquid phase which cools down the surface neighborhood. 
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Figure 3: Temperature (in Celsius) at final time (1000 years) obtained with the Dirichlet top boundary conditions. 

 

Figure 4: Gas saturation at final time (1000 years) obtained with the Dirichlet top boundary conditions. 

 

 

Figure 5: Gas and liquid pressures (in 𝑴𝑷𝒂), temperature (in 𝑲), gas saturation and air molar fraction in the gas phase 
weighted by the gas saturation obtained at times t = 6 days, 1 year and 60, 100, 300, 1000 years along the top cells using the 

Dirichlet top boundary condition. 
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3.2 2D geothermal test case with the soil-atmosphere evaporation-outflow boundary condition 
In this subsection, the Dirichlet conditions on the sunny plain and rainy mountain zones are replaced by the evaporation-outflow 
boundary condition developed in section 2. The short and long wave radiation coming from the atmosphere and reaching the soil surface 
is fixed to 1 − 𝑎 𝑅! + 𝑅! = 340 𝑊.𝑚!! and the soil emissivity to 𝜀 = 0.97. The convective molar and energy transfer coefficients 
are set to 𝐻! = 0.69 𝑚𝑜𝑙.𝑚!!. 𝑠!! and 𝐻! = 29×𝐻! = 20 𝑊.𝑚!!.𝐾!!. The far field atmospheric conditions are set to 𝐶!,!

!,!"# =
0.99, 𝐶!,!

!,!"# = 10!!, 𝑇!"# = 300 𝐾 and 𝑃!"# = 1 𝑎𝑡𝑚, corresponding to a relative humidity of 0.5. The precipitation recharge is null 
on the sunny plain zone and fixed to 𝑞!,!"#$ = −3.2  10!! 𝑚𝑜𝑙.𝑚!!. 𝑠!!on the rainy mountain zone with 𝐶!

!,!"#$ = 0.999 and 
𝐶!
!,!"#$ = 10!!. This precipitation recharge corresponds to roughly twice the observed rainfall of 9 𝑚 in 2016. It has been doubled since 

the reservoir 2D cut is assumed to be along a fault plane which favors the water intrusion. 

 

Figure 6: Temperature (in Celsius) at final time (1000 years) obtained with the evaporation-outflow boundary condition. 

 

Figure 7: Gas saturation at final time (1000 years) obtained with the evaporation-outflow boundary condition. 

Figures 6 and 7 exhibit the temperature and the gas saturation in the whole domain at final time. Figure 8 plots the main physical 
variables along the top boundary while Figure 9 plots the same variables along the top cells to be compared with the above Dirichlet test 
case.   

 

Figure 8: Gas and liquid pressures (in 𝑴𝑷𝒂), temperature (in 𝑲) and gas saturation obtained at times t = 1 day, 1 year and 60, 
100, 300, 1000 years at the top boundary using the evaporation-outflow boundary condition. 
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Figure 9: Gas and liquid pressures (in 𝑴𝑷𝒂), temperature (in 𝑲) and gas saturation obtained at times t = 1 day, 1 year and 60, 
100, 300, 1000 years at the top cells using the evaporation-outflow boundary condition. 

Figures 6, 7, when compared with Figures 3, 4, show that at final time the evaporation-outflow boundary condition shifts the high 
temperature zone to the left, from 3575 𝑚 ≤ 𝑥 ≤ 5550 𝑚 at the top boundary for the Dirichlet boundary condition to 2950 𝑚 ≤ 𝑥 ≤
4575 𝑚 for the evaporation-outflow boundary condition. This shift can be explained by the lower liquid pressure 𝑃! = 𝑃!"# − 𝑃!(1) 
provided at the top boundary by the gas Dirichlet condition than the one provided by the evaporation-outflow boundary condition with 
in particular 𝑃! = 𝑃! = 𝑃!"# between say 𝑥 ≤ 5000 𝑚 and 𝑥 ≤ 6000 𝑚 as a result of the liquid outflow. It also results that the 
temperature drop near the shoreline does no longer appear. The gas saturation remains null below the seabed and the desaturated zone is 
shifted to 𝑥 > 5000 𝑚 (see also Figures 5 and 9). It can also be noticed that the desaturated zone is deeper with the evaporation-outflow 
than with the Dirichlet boundary condition. 

In both Figures 3, 4 and 6, 7, convective thermal instabilities can be noticed which are induced artificially by the left Dirichlet boundary 
conditions. An efficient way to get rid off these artefacts is to model the seawater intrusion taking into account the additional salt 
component and the dependence of the liquid viscosity and mass density on the salinity. This is the object of the next test case.   

3.3 2D geothermal test case with a water-air-salt thermodynamic system 
In this subsection, the previous test case of subsection 3.2 is extended to take into account the dissolution of the salt component denoted 
by 𝑠 in the liquid phase. Since our model assumes all components to be present in both phases, the liquid and gas phases are now a 
mixture of three components, the water denoted by 𝑤, the air denoted by 𝑎 and the salt denoted by 𝑠, setting 𝐶 = 𝑤, 𝑎, 𝑠 . The liquid 
molar density 𝜁! and viscosity 𝜇! are functions of the salinity 𝐶! in 𝐾𝑔.𝐾𝑔!! which is now related to the liquid molar fractions by 
𝐶! =

!!!!!

!!
!!!!∈!

, with 𝑚! = 58.44  10!!, 𝑚! = 18  10!!, 𝑚! = 29  10!! 𝐾𝑔.𝑚𝑜𝑙!!. The air and water fugacities in both phases are still 

given by (20) and the fugacities of the salt component are defined by 

fs
g =Cs

gPg,
fs
l =Cs

lHs,

⎧
⎨
⎪

⎩⎪
       (22) 

with a very low Henry constant 𝐻! = 10!! 𝑃𝑎 in order to keep the vaporization of the salt component in the gas phase negligible. The 
Dirichlet boundary condition at the interface between the sea and the reservoir now uses the input salinity 𝐶! = 35  10!!𝐾𝑔.𝐾𝑔!! of 
the sea water. The input salinity at the left side of the reservoir as well as at the bottom boundary is fixed to the lower value 𝐶! =
20  10!!𝐾𝑔.𝐾𝑔!!. The remaining boundary and initial conditions are unchanged compared with the previous test case, using a zero 
salinity for the initial water in the reservoir and for the precipitation recharge. 
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Figure 10: Temperature (in Celsius) at final time (1000 years) obtained with the air-water-salt test case. 

 

Figure 11: Gas saturation at final time (1000 years) obtained with the air-water-salt test case. 

 

Figure 12: Salinity of the liquid phase (in 𝒈.𝑲𝒈!𝟏) at final time (1000 years) obtained with the air-water-salt test case. 

Figures 10, 11, 12 exhibit the temperature, the gas saturation and the salt mass fraction in the liquid phase in the reservoir at final time. 
Figures 13 and 14 show the physical variables at the top boundary and along the top cells. 
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Figure 13: Gas and liquid pressures (in 𝑴𝑷𝒂), temperature (in 𝑲), gas saturation and salt molar fraction in the liquid phase 
weighted by the liquid saturation at times t = 1 day, 1 year and 60, 100, 300, 1000 years at the top boundary, obtained with the 

air-water-salt test case. 

 It is clear from the comparison between Figures 10, 11, 12 and Figures 3, 4 and 6, 7 that the sea water intrusion prevents as expected 
the development of the convective thermal instabilities from the left side of the reservoir. This is due to the higher salinity of the 
seawater compared with the left side and bottom salinity. It also explains why the high temperature zone is shifted to the right in this test 
case compared with the previous test case. The plot of the salt molar fraction in the liquid phase at final time in Figures 10, 11, 12 
clearly shows that the reservoir is splitted in 3 zones depending on the source of the water flux, the sea water zone on the left, the rain 
water zone on the right and the high temperature water zone in between. A high salt molar fraction in the liquid phase can also be 
noticed in Figure 13 at the top boundary due to the liquid vaporization. It goes up to 0.35 at time t =100 years and then decreases to 0.1 
at final time.  It could induce the precipitation of the salt not taken into account in our model. 
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Figure 14: Gas and liquid pressures (in 𝑴𝑷𝒂), temperature (in 𝑲), gas saturation and salt molar fraction in the liquid phase 
weighted by the liquid saturation at times t = 1 day, 1 year and 60, 100, 300, 1000 years along the top cells obtained with the air-

water-salt test case. 

4. CONCLUSION 
In this work, a new formulation for non-isothermal compositional gas liquid Darcy flows based on natural variables and using extended 
phase molar fractions has been introduced. The non-isothermal compositional model is coupled with an advanced soil-atmosphere 
boundary condition accounting for the vaporization of the liquid phase in the atmosphere, the convective molar and energy transfer, a 
liquid outflow condition as well as the precipitation recharge and the radiation. The efficiency of the formulation and the soil-
atmosphere evaporation-outflow boundary condition have been studied on several 2D test cases of a 2D cut of the Bouillante high 
energy geothermal field in Guadeloupe with both air-water and air-water-salt thermodynamic systems.  The importance for geothermal 
simulations of the top boundary condition taking into account the seabed, the sunny plain and the rainy mountain zones is enlightened 
by comparison with a fitted Dirichlet boundary condition.  
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